66 research outputs found

    Characterization and Control of Quantum Spin Chains and Rings

    Get PDF
    Information flow in quantum spin networks is considered. Two types of control -- temporal bang-bang switching control and control by varying spatial degrees of freedom -- are explored and shown to be effective in speeding up information transfer and increasing transfer fidelities. The control is model-based and therefore relies on accurate knowledge of the system parameters. An efficient protocol for simultaneous identification of the coupling strength and the exact number of spins in a chain is presented.Comment: to appear in ISCCSP 201

    Stabilizing Quantum States by Constructive Design of Open Quantum Dynamics

    Full text link
    Based on recent work on the asymptotic behavior of controlled quantum Markovian dynamics, we show that any generic quantum state can be stabilized by devising constructively a simple Lindblad-GKS generator that can achieve global asymptotic stability at the desired state. The applications of such result is demonstrated by designing a direct feedback strategy that achieves global stabilization of a qubit state encoded in a noise-protected subspace.Comment: Revised version with stronger proofs showing uniqueness can be achieved in all cases by using the freedom to the choose diagonal elements of both the Hamiltonian and Lindblad operator, and exploiting the fact that the non-existence of two orthogonal eigenvectors of the Lindblad operator is sufficient but not necessary for global asymptotic stability of the target stat

    Symmetry & Controllability for Spin Networks with a Single-Node Control

    Full text link
    We consider the relation of symmetries and subspace controllability for spin networks with XXZ coupling subject to control of a single node by a local potential (Z-control). Such networks decompose into excitation subspaces. Focusing on the single excitation subspace it is shown that for single-node Z-controls external symmetries are characterized by eigenstates of the system Hamiltonian that have zero overlap with the control node, and there are no internal symmetries. It is further shown that there are symmetries that persist even in the presence of random perturbations. For uniformly coupled XXZ chains a characterization of all possible symmetries is given, which shows a strong dependence on the position of the node we control. Finally, it is shown rigorously for uniform Heisenberg and XX chains subject to single-node Z-control that the lack of symmetry is not only necessary but sufficient for subspace controllability. The latter approach is then generalized to establish controllability results for simple branched networks.Comment: 11 pages, some figures. 3 tables, minor revisio

    Global Control Methods for GHZ State Generation on 1-D Ising Chain

    Full text link
    We discuss how to prepare an Ising chain in a GHZ state using a single global control field only. This model does not require the spins to be individually addressable and is applicable to quantum systems such as cold atoms in optical lattices, some liquid- or solid-state NMR experiments, and many nano-scale quantum structures. We show that GHZ states can always be reached asymptotically from certain easy-to-prepare initial states using adiabatic passage, and under certain conditions finite-time reachability can be ensured. To provide a reference useful for future experimental implementations three different control strategies to achieve the objective, adiabatic passage, Lyapunov control and optimal control are compared, and their advantages and disadvantages discussed, in particular in the presence of realistic imperfections such as imperfect initial state preparation, system inhomogeneity and dephasing.Comment: 13 pages, 11 figure

    Quantum Control of Two-Qubit Entanglement Dissipation

    Full text link
    We investigate quantum control of the dissipation of entanglement under environmental decoherence. We show by means of a simple two-qubit model that standard control methods - coherent or open-loop control - will not in general prevent entanglement loss. However, we propose a control method utilising a Wiseman-Milburn feedback/measurement control scheme which will effectively negate environmental entanglement dissipation.Comment: 11 pages,4 figures, minor correctio

    Fundamental Speed Limits on Quantum Coherence and Correlation Decay

    Full text link
    The study and control of coherence in quantum systems is one of the most exciting recent developments in physics. Quantum coherence plays a crucial role in emerging quantum technologies as well as fundamental experiments. A major obstacle to the utilization of quantum effects is decoherence, primarily in the form of dephasing that destroys quantum coherence, and leads to effective classical behaviour. We show that there are universal relationships governing dephasing, which constrain the relative rates at which quantum correlations can disappear. These effectively lead to speed limits which become especially important in multi-partite systems

    Quantum Control Theory for State Transformations: Dark States and their Enlightenment

    Full text link
    For many quantum information protocols such as state transfer, entanglement transfer and entanglement generation, standard notions of controllability for quantum systems are too strong. We introduce the weaker notion of accessible pairs, and prove an upper bound on the achievable fidelity of a transformation between a pair of states based on the symmetries of the system. A large class of spin networks is presented for which this bound can be saturated. In this context, we show how the inaccessible dark states for a given excitation-preserving evolution can be calculated, and illustrate how some of these can be accessed using extra catalytic excitations. This emphasises that it is not sufficient for analyses of state transfer in spin networks to restrict to the single excitation subspace. One class of symmetries in these spin networks is exactly characterised in terms of the underlying graph properties.Comment: 14 pages, 3 figures v3: rewritten for increased clarit

    Investigation on vanadium chemistry in basic-oxygen-furnace (BOF) slags: a first approach

    Get PDF
    Basic oxygen furnace (BOF) slag accounts for the majority of all residual materials produced during steelmaking and may typically contain certain transition metals. Vanadium, in particular, came into focus in recent years because of its potential environmental toxicity as well as its economic value. This study addresses the vanadium chemistry in BOF slags to better understand its recovery and save handling of the waste stream. The experimental results from the electron probe microanalysis (EPMA) study show that vanadium is preferably incorporated in calcium orthosilicate-like compounds (COS), with two variations occurring, a low vanadium COS (COS-Si) (approx. 1 wt.%), and a high vanadium COS (COS-V) (up to 18 wt.%). Additionally, vanadium is incorporated in dicalcium ferrite-like compounds (DFS) with an average amount of 3 wt.%. Using powder x-ray diffraction analysis (PXRD), EPMA, and virtual component models, stoichiometric formulas of the main vanadium-bearing phases were postulated. The stoichiometries give an estimate of the oxidation states of vanadium in the respective hosts. According to these results, trivalent vanadium is incorporated on the Fe-position in dicalcium ferrite solid solution (DFS), and V4+ and V5+ are incorporated on the Si-position of the COS

    Structured Singular Value Analysis for Spintronics Network Information Transfer Control

    Get PDF
    Control laws for selective transfer of information encoded in excitations of a quantum network, based on shaping the energy landscape using time-invariant, spatially-varying bias fields, can be successfully designed using numerical optimization. Such control laws, already departing from classicality by replacing closed-loop asymptotic stability with alternative notions of localization, have the intriguing property that for all practical purposes they achieve the upper bound on the fidelity, yet the (logarithmic) sensitivity of the fidelity to such structured perturbation as spin coupling errors and bias field leakages is nearly vanishing. Here, these differential sensitivity results are extended to large structured variations using ÎĽ\mu-design tools to reveal a crossover region in the space of controllers where objectives usually thought to be conflicting are actually concordant
    • …
    corecore